On Type-I Quantum Affine Superalgebras

نویسندگان

  • Gustav W. Delius
  • Mark D. Gould
  • Jon R. Links
  • Yao-Zhong Zhang
چکیده

The type-I simple Lie-superalgebras are sl(m|n) and osp(2|2n). We study the quantum deformations of their untwisted affine extensions Uq(sl(m|n) (1)) and Uq(osp(2|2n) (1)). We identify additional relations between the simple generators (“extra q-Serre relations”) which need to be imposed to properly defineUq(sl(m|n) (1)) and Uq(osp(2|2n) (1)). We present a general technique for deriving the spectral parameter dependent Rmatrices from quantum affine superalgebras. We determine the R-matrices for the type-I affine superalgebra Uq(sl(m|n) (1)) in various representations, thereby deriving new solutions of the spectral-dependent Yang-Baxter equation. In particular, because this algebra possesses one-parameter families of finite-dimensional irreps, we are able to construct R-matrices depending on two additional spectral-like parameters, providing generalizations of the free-fermion model. Supported by Habilitationsstipendium der Deutschen Forschungsgesellschaft On leave from Department of Physics, Bielefeld University, Germany

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetrizable Quantum Affine Superalgebras and Their Representations

Aspects of the algebraic structure and representation theory of the quantum affine superalgebras with symmetrizable Cartan matrices are studied. The irreducible integrable highest weight representations are classified, and shown to be deformations of their classical counterparts. It is also shown that Jimbo type quantum affine superalgebras can be obtained by deforming universal enveloping alge...

متن کامل

M ay 2 00 8 Drinfeld second realization of the quantum affine superalgebras of D ( 1 ) ( 2 , 1 ; x ) via the Weyl groupoid

We obtain Drinfeld second realization of the quantum affine superalgebras associated with the affine Lie superalgebra D(1)(2, 1;x). Our results are analogous to those obtained by Beck for the quantum affine algebras. Beck’s analysis uses heavily the (extended) affine Weyl groups of the affine Lie algebras. In our approach the structures are based on a Weyl groupoid. Preprint numbers: MIT-CTP 38...

متن کامل

On Super RS Algebra and Drinfeld Realization of Quantum Affine Superalgebras

We describe the realization of the super Reshetikhin-Semenov-Tian-Shansky (RS) algebra in quantum affine superalgebras, thus generalizing the approach of Frenkel-Reshetikhin to the supersymmetric (and twisted) case. The algebraic homomorphism between the super RS algebra and the Drinfeld current realization of quantum affine superalgebras is established by using the Gauss decomposition techniqu...

متن کامل

Classification of Supersymmetries

In the first part of my talk I will explain a solution to the extension of Lie’s problem on classification of ”local continuous transformation groups of a finite-dimensional manifold” to the case of supermanifolds. (More precisely, the problem is to classify simple linearly compact Lie superalgebras, i.e. toplogical Lie superalgebras whose underlying space is a topological product of finite-dim...

متن کامل

coordinatized by quantum tori

We use a fermionic extension of the bosonic module to obtain a class of B(0, N)-graded Lie superalgebras with nontrivial central extensions. 0 Introduction B(M − 1, N)-graded Lie superalgebras were first investigated and classified up to central extension by Benkart-Elduque (see also Garcia-Neher’s work in [GN]). Those root graded Lie superalgebras are a super-analog of root graded Lie algebras...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994